March 17, 2021

12:00 pm / 1:00 pm


Link for Live Seminar
Link for Recorded seminars ? 2020/2021 school year
Fixed-wing unmanned aerial vehicles (UAVs) offer significant performance advantages over rotary-wing UAVs in terms of speed, endurance, and efficiency. However, these vehicles have traditionally been severely limited with regards to take-off, landing, and overall maneuverability. In this talk, I will discuss our recent efforts to exploit post-stall aerodynamics to dramatically increase the agility of fixed-wing UAVs. I will first present results in precision post-stall landing anddemonstrate that previous results in fixed-wing perching can be scaled tolarger vehicles. I will then discuss our efforts to achieve quadcopter-like agility with fixed-wing vehicles when navigating in constrained environments. Our approach relies on a receding-horizon nonlinear model predictive control (NMPC) strategy to reduce the vehicle’s minimum turning radius via ?post-stall turns?. We demonstrate this approach on a small 24-inch wingspan UAV in indoor environments and on a larger, 42-inch UAV in an urbanenvironment. Finally, I will discuss ongoing work to address challenges such as onboard sensing, automatic take-off, and aerobatic fixed-wing swarms.
Dr. Joseph Moore is a member of the senior technicalstaff at the Johns Hopkins University Applied Physics Laboratory and an Assistant Research Professor in the Mechanical Engineering Department at the JHU Whiting School of Engineering. Dr. Moore received his Ph.D. in 2014 in Mechanical Engineering from the Massachusetts Institute of Technology where he demonstrated that the LQR-Trees algorithm can generate a robust post-stall perching controller for a fixed-wing glider. While at JHU/APL, Dr. Moore has spent his time developing control, localization and motion planning algorithms for air, ground and hybrid aerial-aquatic vehicles. His paper on the design and analysis of a fixed-wing aerial aquatic vehicle was nominated for Best UAV Paper at ICRA 2018. He is the Principal Investigator and Project Manager for the ONR Short-field Landing Program, which seeks to enable aggressive post-stall landing maneuvers with large Group 1Unmanned Aerial Systems. He is also the Principal Investigator of JHU/APL’s DARPA OFFSET Sprint 4 and Sprint 5 efforts, which seeks to develop a swarm of aerobatic fixed-wing vehicles capable of high-speed navigation in urban environments.